\(\int \cos ^3(c+d x) \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \, dx\) [74]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 187 \[ \int \cos ^3(c+d x) \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \, dx=\frac {4 a (9 A+8 B) \sin (c+d x)}{45 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a (9 A+8 B) \cos ^3(c+d x) \sin (c+d x)}{63 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a B \cos ^4(c+d x) \sin (c+d x)}{9 d \sqrt {a+a \cos (c+d x)}}-\frac {8 (9 A+8 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{315 d}+\frac {4 (9 A+8 B) (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{105 a d} \]

[Out]

4/105*(9*A+8*B)*(a+a*cos(d*x+c))^(3/2)*sin(d*x+c)/a/d+4/45*a*(9*A+8*B)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2/6
3*a*(9*A+8*B)*cos(d*x+c)^3*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2/9*a*B*cos(d*x+c)^4*sin(d*x+c)/d/(a+a*cos(d*x+
c))^(1/2)-8/315*(9*A+8*B)*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {3060, 2849, 2838, 2830, 2725} \[ \int \cos ^3(c+d x) \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \, dx=\frac {2 a (9 A+8 B) \sin (c+d x) \cos ^3(c+d x)}{63 d \sqrt {a \cos (c+d x)+a}}+\frac {4 (9 A+8 B) \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{105 a d}-\frac {8 (9 A+8 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{315 d}+\frac {4 a (9 A+8 B) \sin (c+d x)}{45 d \sqrt {a \cos (c+d x)+a}}+\frac {2 a B \sin (c+d x) \cos ^4(c+d x)}{9 d \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[Cos[c + d*x]^3*Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x]),x]

[Out]

(4*a*(9*A + 8*B)*Sin[c + d*x])/(45*d*Sqrt[a + a*Cos[c + d*x]]) + (2*a*(9*A + 8*B)*Cos[c + d*x]^3*Sin[c + d*x])
/(63*d*Sqrt[a + a*Cos[c + d*x]]) + (2*a*B*Cos[c + d*x]^4*Sin[c + d*x])/(9*d*Sqrt[a + a*Cos[c + d*x]]) - (8*(9*
A + 8*B)*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(315*d) + (4*(9*A + 8*B)*(a + a*Cos[c + d*x])^(3/2)*Sin[c + d*
x])/(105*a*d)

Rule 2725

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2*b*(Cos[c + d*x]/(d*Sqrt[a + b*Sin[c + d*x
]])), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2830

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*S
in[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m
, -2^(-1)]

Rule 2838

Int[sin[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-Cos[e + f*x])*(
(a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*(b*(m + 1) -
a*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]

Rule 2849

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[2*n*((b*c + a*d)
/(b*(2*n + 1))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]

Rule 3060

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt
[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a B \cos ^4(c+d x) \sin (c+d x)}{9 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{9} (9 A+8 B) \int \cos ^3(c+d x) \sqrt {a+a \cos (c+d x)} \, dx \\ & = \frac {2 a (9 A+8 B) \cos ^3(c+d x) \sin (c+d x)}{63 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a B \cos ^4(c+d x) \sin (c+d x)}{9 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{21} (2 (9 A+8 B)) \int \cos ^2(c+d x) \sqrt {a+a \cos (c+d x)} \, dx \\ & = \frac {2 a (9 A+8 B) \cos ^3(c+d x) \sin (c+d x)}{63 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a B \cos ^4(c+d x) \sin (c+d x)}{9 d \sqrt {a+a \cos (c+d x)}}+\frac {4 (9 A+8 B) (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{105 a d}+\frac {(4 (9 A+8 B)) \int \left (\frac {3 a}{2}-a \cos (c+d x)\right ) \sqrt {a+a \cos (c+d x)} \, dx}{105 a} \\ & = \frac {2 a (9 A+8 B) \cos ^3(c+d x) \sin (c+d x)}{63 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a B \cos ^4(c+d x) \sin (c+d x)}{9 d \sqrt {a+a \cos (c+d x)}}-\frac {8 (9 A+8 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{315 d}+\frac {4 (9 A+8 B) (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{105 a d}+\frac {1}{45} (2 (9 A+8 B)) \int \sqrt {a+a \cos (c+d x)} \, dx \\ & = \frac {4 a (9 A+8 B) \sin (c+d x)}{45 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a (9 A+8 B) \cos ^3(c+d x) \sin (c+d x)}{63 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a B \cos ^4(c+d x) \sin (c+d x)}{9 d \sqrt {a+a \cos (c+d x)}}-\frac {8 (9 A+8 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{315 d}+\frac {4 (9 A+8 B) (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{105 a d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.40 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.55 \[ \int \cos ^3(c+d x) \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \, dx=\frac {\sqrt {a (1+\cos (c+d x))} (1368 A+1321 B+94 (9 A+8 B) \cos (c+d x)+4 (54 A+83 B) \cos (2 (c+d x))+90 A \cos (3 (c+d x))+80 B \cos (3 (c+d x))+35 B \cos (4 (c+d x))) \tan \left (\frac {1}{2} (c+d x)\right )}{1260 d} \]

[In]

Integrate[Cos[c + d*x]^3*Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x]),x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*(1368*A + 1321*B + 94*(9*A + 8*B)*Cos[c + d*x] + 4*(54*A + 83*B)*Cos[2*(c + d*x)]
+ 90*A*Cos[3*(c + d*x)] + 80*B*Cos[3*(c + d*x)] + 35*B*Cos[4*(c + d*x)])*Tan[(c + d*x)/2])/(1260*d)

Maple [A] (verified)

Time = 2.71 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.65

method result size
default \(\frac {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (560 B \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-360 A -1440 B \right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (756 A +1512 B \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-630 A -840 B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+315 A +315 B \right ) \sqrt {2}}{315 \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(121\)
parts \(\frac {2 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (40 \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-36 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+22 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+9\right ) \sqrt {2}}{35 \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}+\frac {2 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (560 \left (\cos ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-800 \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+552 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-104 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+107\right ) \sqrt {2}}{315 \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(183\)

[In]

int(cos(d*x+c)^3*(a+cos(d*x+c)*a)^(1/2)*(A+B*cos(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

2/315*cos(1/2*d*x+1/2*c)*a*sin(1/2*d*x+1/2*c)*(560*B*sin(1/2*d*x+1/2*c)^8+(-360*A-1440*B)*sin(1/2*d*x+1/2*c)^6
+(756*A+1512*B)*sin(1/2*d*x+1/2*c)^4+(-630*A-840*B)*sin(1/2*d*x+1/2*c)^2+315*A+315*B)*2^(1/2)/(a*cos(1/2*d*x+1
/2*c)^2)^(1/2)/d

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.53 \[ \int \cos ^3(c+d x) \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \, dx=\frac {2 \, {\left (35 \, B \cos \left (d x + c\right )^{4} + 5 \, {\left (9 \, A + 8 \, B\right )} \cos \left (d x + c\right )^{3} + 6 \, {\left (9 \, A + 8 \, B\right )} \cos \left (d x + c\right )^{2} + 8 \, {\left (9 \, A + 8 \, B\right )} \cos \left (d x + c\right ) + 144 \, A + 128 \, B\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{315 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

[In]

integrate(cos(d*x+c)^3*(a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)),x, algorithm="fricas")

[Out]

2/315*(35*B*cos(d*x + c)^4 + 5*(9*A + 8*B)*cos(d*x + c)^3 + 6*(9*A + 8*B)*cos(d*x + c)^2 + 8*(9*A + 8*B)*cos(d
*x + c) + 144*A + 128*B)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/(d*cos(d*x + c) + d)

Sympy [F(-1)]

Timed out. \[ \int \cos ^3(c+d x) \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**3*(a+a*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.41 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.78 \[ \int \cos ^3(c+d x) \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \, dx=\frac {18 \, {\left (5 \, \sqrt {2} \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 7 \, \sqrt {2} \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 35 \, \sqrt {2} \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 105 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} A \sqrt {a} + {\left (35 \, \sqrt {2} \sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ) + 45 \, \sqrt {2} \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 252 \, \sqrt {2} \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 420 \, \sqrt {2} \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 1890 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} B \sqrt {a}}{2520 \, d} \]

[In]

integrate(cos(d*x+c)^3*(a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)),x, algorithm="maxima")

[Out]

1/2520*(18*(5*sqrt(2)*sin(7/2*d*x + 7/2*c) + 7*sqrt(2)*sin(5/2*d*x + 5/2*c) + 35*sqrt(2)*sin(3/2*d*x + 3/2*c)
+ 105*sqrt(2)*sin(1/2*d*x + 1/2*c))*A*sqrt(a) + (35*sqrt(2)*sin(9/2*d*x + 9/2*c) + 45*sqrt(2)*sin(7/2*d*x + 7/
2*c) + 252*sqrt(2)*sin(5/2*d*x + 5/2*c) + 420*sqrt(2)*sin(3/2*d*x + 3/2*c) + 1890*sqrt(2)*sin(1/2*d*x + 1/2*c)
)*B*sqrt(a))/d

Giac [A] (verification not implemented)

none

Time = 0.69 (sec) , antiderivative size = 182, normalized size of antiderivative = 0.97 \[ \int \cos ^3(c+d x) \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \, dx=\frac {\sqrt {2} {\left (35 \, B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ) + 45 \, {\left (2 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 126 \, {\left (A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 2 \, B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 210 \, {\left (3 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 2 \, B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 1890 \, {\left (A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} \sqrt {a}}{2520 \, d} \]

[In]

integrate(cos(d*x+c)^3*(a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)),x, algorithm="giac")

[Out]

1/2520*sqrt(2)*(35*B*sgn(cos(1/2*d*x + 1/2*c))*sin(9/2*d*x + 9/2*c) + 45*(2*A*sgn(cos(1/2*d*x + 1/2*c)) + B*sg
n(cos(1/2*d*x + 1/2*c)))*sin(7/2*d*x + 7/2*c) + 126*(A*sgn(cos(1/2*d*x + 1/2*c)) + 2*B*sgn(cos(1/2*d*x + 1/2*c
)))*sin(5/2*d*x + 5/2*c) + 210*(3*A*sgn(cos(1/2*d*x + 1/2*c)) + 2*B*sgn(cos(1/2*d*x + 1/2*c)))*sin(3/2*d*x + 3
/2*c) + 1890*(A*sgn(cos(1/2*d*x + 1/2*c)) + B*sgn(cos(1/2*d*x + 1/2*c)))*sin(1/2*d*x + 1/2*c))*sqrt(a)/d

Mupad [F(-1)]

Timed out. \[ \int \cos ^3(c+d x) \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \, dx=\int {\cos \left (c+d\,x\right )}^3\,\left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )} \,d x \]

[In]

int(cos(c + d*x)^3*(A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^3*(A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(1/2), x)